[JAVA 8] Collections 进阶用法
Collections 除了基本统计用法,还有提供了类似SQL分组数据的用法.通过传递分组参数 写一句sql,
1
select DISH_TYPE from DISH where 1 = 1 group by DISH_TYPE;
有时候,很多时候很多场景,我们都要对所属数据进行这样的grouping.特别现在前后端交互,json盛行之时. 顾,java8中提供了分组的接口,可以将数据简单的封装成一个Map
#####示例
例1: 分组(Grouping)
1 2 3 4 5 6 7 8 private static Map<CaloricLevel, List<Dish>> groupDishesByCaloricLevel() { return menu.stream().collect( groupingBy(dish -> { if (dish.getCalories() <= 400) return CaloricLevel.DIET; else if (dish.getCalories() <= 700) return CaloricLevel.NORMAL; else return CaloricLevel.FAT; } )); }运行结果:
{FISH=[prawns, salmon], MEAT=[pork, beef, chicken], OTHER=[french fries, rice, season fruit, pizza]}
例2: 多级Grouping
1 2 3 4 5 6 7 8 9 10 11 private static Map<Dish.Type, Map<CaloricLevel, List<Dish>>> groupDishedByTypeAndCaloricLevel() { return menu.stream().collect( groupingBy(Dish::getType, groupingBy((Dish dish) -> { if (dish.getCalories() <= 400) return CaloricLevel.DIET; else if (dish.getCalories() <= 700) return CaloricLevel.NORMAL; else return CaloricLevel.FAT; } ) ) ); }运行结果:
1 {FISH={NORMAL=[salmon], DIET=[prawns]}, MEAT={NORMAL=[beef], DIET=[chicken], FAT=[pork]}, OTHER={NORMAL=[french fries, pizza], DIET=[rice, season fruit]}}
#####反例! 斟酌何时使用何种实现方式,要求你能理解领悟每种方式的优缺点和特点.
今天在一次排除重复用户名不同对象时候滥用了Collectors的Grouping方法.被无情的指出后记录于此.
1
2
3
4
5
6
7
8
9
public Set<UserDTO> findAllUserByRoles(final String... roles) {
final String isimAppName = environmentService.getIsimApplicationName();
Set<UserDTO> users = new HashSet<>();
Stream.of(roles).forEach(roleName -> {
users.addAll(mapper.mapToDTOs(mapper.mapExtranetDatasToCotoolUsers(extranetRepoProxy.findAllUsersByRole(isimAppName, roleName))));
});
Map<String, List<UserDTO>> usersByUsername = users.stream().collect(Collectors.groupingBy(UserDTO::getUsername));
return usersByUsername.values().stream().map(n -> n.stream().findFirst().get()).collect(Collectors.toSet());
}
思路:根据username分组,再getFirst,如此处理之后便剩下username不重复的所有用户. 思路的确能达到效果,但是画蛇添足.
改正后:
1
2
3
4
5
6
7
8
public Set<UserDTO> findAllUserByRoles(final String... roles) {
final String isimAppName = environmentService.getIsimApplicationName();
List<UserDTO> users = new ArrayList<>();
Stream.of(roles).forEach(roleName -> {
users.addAll(mapper.mapToDTOs(extranetRepoProxy.findAllUsersByRole(isimAppName, roleName)));
});
return users.stream().distinct().collect(Collectors.toSet());
}
并重写UserDTO中的 equals 和 hashCode 方法
For removing duplicate elements from a stream you can use “distinct()”, if the object in your stream have implemented the equals and hashcode method.
This post is licensed under CC BY 4.0 by the author.